您现在的位置是:首页 > 消费电子 > 技术解析

5G毫米波无线电射频技术

时间:2017-10-10 来源:

简介

业界普遍认为,混合波束赋形(例如图1所示)将是工作在微波和毫米波频率的5G系统的首选架构。这种架构综合运用数字(MIMO) 和模拟波束赋形来克服高路径损耗并提高频谱效率。如图1所示,m个数据流的组合分割到n条RF路径上以形成自由空间中的波束,故天线元件总数为乘积m × n。数字流可通过多种方式组合,既可利用高层MIMO将所有能量导向单个用户,也可以利用多用户MIMO支持多个用户。

 

图1. 混合波束赋形框图

 

图1. 混合波束赋形框图

本文将考察一个简单的大规模天线阵列示例,借以探讨毫米波无线电的最优技术选择。现在深入查看毫米波系统无线电部分的框图,我们看到一个经典超外差结构完成微波信号到数字信号的变换, 然后连接到多路射频信号处理路径,这里主要是运用微波移相器和衰减器来实现波束赋形。

传统上,毫米波系统是利用分立器件构建,导致其尺寸较大且成本较高。这样的系统里面的器件使用CMOS、SiGe BiCMOS和GaAs等技术,使每个器件都能得到较优的性能。例如,数据转换器现在采用CMOS工艺开发,使采样速率达到GHz范围。上下变频和波束赋形功能可以在SiGe BiCMOS中有效实现。根据系统指标要求,可能需要基于GaAs功率放大器和低噪声放大器,但如果SiGe BiCMOS能够满足要求,利用它将能实现较高的集成度。

对于5G毫米波系统,业界希望将微波器件安装在天线基板背面,这要求微波芯片的集成度必须大大提高。例如,中心频率为28 GHz的天线的半波阵子间距约为5 mm。频率越高,此间距越小,芯片或封装尺寸因而成为重要考虑因素。理想情况下,单波束的整个框图都应当集成到单个IC中;实际情形中,至少应将上下变频器和RF前端集成到单个RFIC中。集成度和工艺选择在某种程度上是由应用决定的,在下面的示例分析中我们将体会到这一点。

示例分析:天线中心频率为28 GHz,EIRP为60 dBm

此分析考虑一个典型基站天线系统,EIRP要求为60 dBm。使用如下假设条件:

天线阵子增益 = 6 dBi(瞄准线)

波形PAPR = 10 dB(采用QAM的OFDM)

P1dB时的功率放大器PAE = 30%

发射/接收开关损耗 = 2 dB

发射/接收占空比 = 70%/30%

数据流 = 8

各电路模块的功耗基于现有技术。

该模型以8个数据流为基础来构建,连接到不同数量的RF链。模型中的天线数量以8的倍数扩大,最多512个元件。

图2显示了功率放大器线性度随着天线增益提高而变化的情况。注意:由于开关损耗,放大器的输出功率要比提供给天线的功率高2 dB。当给天线增加元件时,方向性增益随着X轴对数值提高而线性提高,因此,各放大器的功耗要求降低。

为了便于说明,我们在曲线上叠加了技术图,指示哪种技术对不同范围的天线元件数量最佳。注意:不同技术之间存在重叠,这是因为每种技术都有一个适用的值范围。另外,根据工艺和电路设计实践,具体技术可以实现的性能也有一个范围。元件非常少时,各链需要高功率PA(GaN和GaAs),但当元件数量超过200时,P1dB降到20 dBm以下,处于硅工艺可以满足的范围。当元件数量超过500时,PA性能处于当前CMOS技术就能实现的范围。

 

图2. 天线增益与功率放大器输出水平要求的关系

 

图2. 天线增益与功率放大器输出水平要求的关系

现在考虑元件增加时天线Tx系统的功耗,如图3所示。同预期一样,功耗与天线增益成反比关系,但有一个限值。超过数百元件时,PA的功耗不再占主导地位,导致效益递减。

 

图3. 天线增益与天线Tx部分直流功耗的关系

 

图3. 天线增益与天线Tx部分直流功耗的关系

整个系统的功耗如图4所示(包括发射机和接收机)。同预期一样,接收机的功耗随着RF链的增加而线性提高。若将不断下降的Tx功耗曲线叠加在不断上升的Rx功耗曲线上,我们会观察到一个最低功耗区域。

本例中,最低值出现在大约128个元件时。回顾图2给出的技术图,要利用128个元件实现60 dBm的EIRP,最佳PA技术是GaAs。

虽然使用GaAs PA可以实现最低的天线功耗和60 dBm EIRP,但这可能无法满足系统设计的全部要求。前面提到,很多情况下要求将RFIC放在天线元件的λ/2间距以内。使用GaAs发射/接收模块可提供所需的性能,但不满足尺寸约束条件。为了利用GaAs发射/接收模块,需要采用其他封装和布线方案。

优先选择可能是增加天线元件数量以使用集成到RFIC中的SiGe BiCMOS功率放大器。图4显示,若将元件数量加倍,达到约256时,SiGe放大器便能满足输出功率要求。功耗的增幅很小,而且可以把SiGe BiCMOS RFIC放到天线元件 (28 GHz) 的λ/2间距以内。

将这一做法扩展到CMOS,我们发现CMOS也能实现整体60 dBm EIRP,但从技术图看,元件数量还要加倍。因此,这种方案会导致尺寸和功耗增加,考虑到电流技术限制,CMOS方法不是可行的选择。

 

图4. 整个天线阵列的直流功耗与天线增益的关系

 

图4. 整个天线阵列的直流功耗与天线增益的关系

我们的分析表明:同时考虑功耗和集成尺寸的话,当前实现60dBm EIRP天线的最佳方案是将SiGe BiCMOS技术集成到RFIC中。然而,如果考虑将更低功耗的天线用于CPE,那么CMOS当然是可行的方案。

这一分析是基于当前可用技术,但毫米波硅工艺和设计技术正在取得重大进步。我们预计未来的硅工艺会有更好的能效和更高的输出功率能力,将能实现更小的尺寸并进一步优化天线尺寸。

随着5G的到来日益临近,设计人员将持续遇到挑战。为毫米波无线电应用确定最佳技术方案时,考虑信号链的所有方面和不同IC工艺的各种优势是有益的。随着5G生态系统不断发展,ADI公司依托独有的比特到毫米波能力,致力于为客户提供广泛的技术组合(包括各种电路设计工艺)和系统化方法。

换一批

延伸阅读

[新鲜事] 中国国家电网公司动工建造一条有望破世界纪录的高压直流输电线路

中国国家电网公司动工建造一条有望破世界纪录的高压直流输电线路

中国国家电网公司在昨天宣布,他们已经在新疆维吾尔自治区的哈密南部动工,将会建造一条长2,210公里的800千伏特高压直流输电线路,它将会贯穿甘肃、宁夏、陕西、山西、河南等地直达郑州。工程预计会在2014年完工,将......

关键字:国家电网 高压直流 输电线路

[新鲜事] 工程师在面对小密铅酸蓄电池池壳检测中的直流高压时该如何应对

工程师在面对小密铅酸蓄电池池壳检测中的直流高压时该如何应对

  1﹑引言  随着铅酸蓄电池质量的不断提高,其应用范围越来越广泛。要生产一只合格的铅酸蓄电池,必须经过多道生产工艺,而且每道生产工艺都有严格的工艺要求。目前大部分蓄电池壳生产厂家在蓄电池池壳注塑后仅凭......

关键字:工程师 池壳检测 铅酸蓄电池 直流高压

[新鲜事] 日本研发“最强激光”输出功率为世界最大(图文)

日本研发“最强激光”输出功率为世界最大(图文)

据日媒报道,日本大阪大学的研究团队日前宣布,已成功研制出能发出瞬间集中能源、输出功率达2千兆瓦特的激光。日媒称,该激光的输出功率为世界最大,相当于瞬间达到全世界电力消耗的1千倍。此成果可应用于激光核聚变......

关键字:激光 输出功率

[新鲜事] 高通QC1.0-4.0快充技术功率电压进化史

高通QC1.0-4.0快充技术功率电压进化史

快充技术日新月异,快充市场百家争鸣的今天,高通QC快充依然主导着市场。如今QC快充已发展到第四代,每一代都有着革命性的进步。从QC1.0到QC4.0更新换代时间之短,不免让广大人民群众抱怨。“啥?老子QC3.0都没用......

关键字:高通 快充技术 功率 电压

[资讯] Vishay公布2017年新“Super 12”明星产品

Vishay公布2017年新“Super 12”明星产品

日前,Vishay Intertechnology, Inc.宣布,公布2017年的“Super 12”明星产品。每一年,Vishay都会精选出12个采用新技术或改进技术,能够显著提高终端产品和系统......

关键字:Vishay 无源元件 功率MOSFET

[资讯] 如何从驱动IGBT入手——优化直流充电桩的功率转换

如何从驱动IGBT入手——优化直流充电桩的功率转换

在全球能源危机和环境危机严重的大背景下,在我国政府积极推进新能源汽车的应用与发展的政策环境下, 电动汽车作为一种发展前景广阔的绿色交通工具,今后的普及速度非常迅......

关键字: Si828x SILICON LABS 直流充电桩 交流充电桩 隔离器 隔离耦合器

[资讯] 无线充电有何神秘?也就这两类

无线充电有何神秘?也就这两类

“无线充电” 技术由来已久,早在 2007 年麻省理工学院的研究团队就做过实验,一团线圈附在传送电力方,另一团在接受电力方,利用铜制线圈作为电磁共振器,成功为一个两米外的 60 瓦灯泡供电。......

关键字:无线充电 小功率 大功率

[资讯] SiC使通讯电源PFC设计更高效、更简单

SiC使通讯电源PFC设计更高效、更简单

通讯电源是服务器,基站通讯的能源库,为各种传 输设备提供电能,保证通讯系统正常运行,通信电源系统在整个通信行业中占的比例比较小,但它是整个通信网络的关键基础设施,......

关键字:控整流PFC 通讯电源PFC 功率因数校正 SiC模块 SiC技术 SiC材料
发表评论 共有条评论
用户名: 验证码:

集成运算放大器基础知识及示例电路

集成运算放大器基础知识及示例电路

能够把微弱的信号放大的电路叫做放大电路或放大器。集成运算放大器是一种把多级直流放……

值得珍藏的经典模拟电路

值得珍藏的经典模拟电路

作为一个电子人,我们平时需要和不同的电路接触,但有一些电路图是经典的,值得我们永……

模拟电路--整流杂谈

模拟电路--整流杂谈

模拟电路教材中一般都会讲到整流电路,但通常很简略,只有一页两页篇幅,往往是只讲小……

项目外包