您现在的位置是:首页 > 消费电子 > 技术解析

基于超声计数的智能交通灯控制系统

时间:2018-01-10 来源: 关键字:控制   功率   

随着经济的发展,汽车数量越来越多,城市道路压力越来越大。交通信号灯作为管制交通流量、提高道路通行能力的有效手段,对减少交通事故有明显效果。而传统的交通灯采用固定的时间控制,不能根据车流量大小来控制红绿灯时间,经常出现通行时间与车流量不适应情况,不仅浪费了时间,容易造成“堵车”现象。为克服这种少车路口绿灯时无车通行或多车路口绿灯通行时间短而堵车等资源浪费的现象,本文采用超声计数的方式设计了一种实时监测车流量的智能交通灯控制,通过动态调节增加了灵活性和实用性。

本文引用地址: http://power.21ic.com//ce/technical/201801/59360.html

1、系统结构

系统主要由微控制器模块、电源管理模块、超声车流量检测模块、红外遥控模块、十字路口交通灯组和以太网接口等几部分组成,系统整体框图如图1所示。系统在每个交通路口安装超声检测装置,单片机通过该装置实时检测路口的状态,根据程序逻辑控制交通灯组,实现对交通灯的智能控制。由于单片机的调控能力有限,在特殊的情况下需要交警进行手动控制。虽然现行使用的交通灯控制系统提供人为干预功能,但都是由交警在远离路口的交通灯机箱处进行控制,非常不方便,为此设计了红外遥控模块,交警在十字路口的任何地方都能够实现对交通灯的控制。

 

基于超声计数的智能交通灯控制系统

 

图1 系统整体框图

系统中预留了以太网接口模块。采集的数据可通过节点传输到交通部门的计算机主机,提供远程监测交通路口的状况功能,同时还允许对交通灯进行远程的控制,为交通系统的网络化、信息化管理奠定基础。

系统的MCU选择为MSP430F449,主要完成本系统对路口16个监测装置的信号检测,数据处理和对4个灯组的控制。

2、车辆检测

2.1、超声检测模块的安装

考虑到右转车道车辆可以直接通过,只在直行车道和左转车道上架设超声传感器。在每个方向的通道上均架设两组超声传感器,具体架设位置如图2所示。前一组紧挨停车线,检测驶离该方向通道的车辆数(下文中称其为超声模块组1);后一组架设在距停车线80~100m处(下文中称其为超声模块组2),检测驶入该方向通道的车辆数。两者之差既是该时刻该通道上的车辆数,也是该通道等待通行的车辆数,此数据是控制该路口交通灯通行时间的依据。

 

基于超声计数的智能交通灯控制系统

 

图2 超声计数模块架设平面上示意图

2.2、超声计数模块

2.2.1、超声测距原理

超声波测距是通过超声脉冲回波渡越时间法来实现的。设超声波脉冲由传感器发出,经障碍物反射,到回波的接收所历经的总时间为t,超声波在空气中的传播速度为v,则从传感器到目标物体的距离D可用下

式求出:

D=t&mes;v/2 (1)

超声测距系统的原理框图如图3所示。

 

基于超声计数的智能交通灯控制系统

 

图3 超声测距系统的原理框图

2.2.2、超声计数原理

超声计数是超声测距技术的深化应用。超声测距模块架设在车道的上方,设无车时测得的距离是模块到地面的距离D1,有车时测得的距离是模块到车顶的距离D2,前后两次测得的距离差为ΔD。当车辆驶入超声模块的测量范围时,超声模块首先测得距离D1,下一周期测得距离D2,前后两次测得的距离差为ΔD=D2-D1<0;当无车通过、车辆通过的过程中距离没有任何变化ΔD=0;当车辆驶离超声模块的测量范围时,超声模块首先测得距离D2,下一周期测得距离D2,前后两次测得的距离差为ΔD=D1-D2>0。故每检测到一次ΔD<0,代表一辆车通过超声模块下方,从而实现对车辆的计数。超声计数原理如图4所示。

 

基于超声计数的智能交通灯控制系统

 

图4 超声计数原理

2.2.3、超声计数模块选择

本系统选择HC-SR04超声波测距模块来实现超声测距,该模块时序图如图5所示。模块回响电平的脉宽(高电平的时间)即测距渡越时间,测出脉宽并利用式(1)就能够实现对障碍物距离的测量。脉宽与距离之间存在线性关系,检测脉宽的改变,就能够实现对车辆的计数。

 

基于超声计数的智能交通灯控制系统

 

图5 HC-SR04超声波测距模块时序图

2.3、检测模块与MSP430的信号交互

由图5HC-SR04超声波测距模块时序图可知,HC-SR04与MSP430之间存在信号的交互:1个为超声模块触发信号,由MSP430输出到HC-SR04;另1个为回响电平,由HC-SR04输出到MSP430。实验测得的触发信号如图6所示,回响信号如图7所示(障碍物在2.1m处)。

 

基于超声计数的智能交通灯控制系统

 

图6触发信号

 

基于超声计数的智能交通灯控制系统

 

图7回响信号

由理论分析可知触发信号频率不能太高,否则会引起信号的混叠,导致误判;频率也不能太低,否则不能够实现对车辆的实时检测,故本系统选择触发频率为10Hz。

利用MSP430中TImerA、TImerB的捕获功能可以实现对回响脉冲的精确计时,进而通过内部程序算法实现对车辆的计数[7-8]。为了节省MSP430内部的定时器资源,将超声模块组1四个路口的回响信号分时[9]的输入到MSP430中。检测模块电路图如图8所示。

 

基于超声计数的智能交通灯控制系统

 

图8 检测模块电路图

2.4、误差分析

2.4.1、测距误差

本系统是以室温(15℃)时的声速(340m/s)计算距离的,而实际环境中的声速是随机量,有如下计算公式:

v=331.3+0.606c(2)

c为摄氏气温。根据式(2)知:

声速误差

Δv=(c-15)&TImes;0.606

有测距误差

ΔD=TΔv(3)

测距误差会引起车辆的误判,最终导致系统错误的分配时间。

为了消除此误差,系统不以某个固定的脉宽(对应某个固定的距离)为车辆判据,而以脉宽的显著变化为车辆的判据,由于温度相对测距时间是一个慢变量,在一辆车通过的时间内(1s)认为不变,此种处理方式可消除声速误差。

2.4.2、车辆的混道行驶误差

另一个会引起误差的因素是车辆的混道行驶。一种情况是右转的车辆通过模块2下方,使计数增加;一种情况是左转或者右转的车辆通过右转车道进入模块2和模块1之间的范围,使计数减少。但因其发生的概率很小,两种情况有互补作用,且少量的计数不准确不会对车辆的通车时间的设定产生很大的影响,因此可以忽略不计。

综上所述,系统的误差在允许范围内,不会对系统的功能产生很大的影响,系统可以达到智能调控交通灯的目的。

3、红外遥控模块电路设计

红外遥控模块核心部分是数据的编码发射和解码接收,本系统采用PT2262和PT2272[10-11]红外发射接收芯片来实现上述功能。电路图如图9、图10所示。

 

基于超声计数的智能交通灯控制系统

 

 

基于超声计数的智能交通灯控制系统

 

4、交通灯驱动电路设计

交通灯组是大功率器件,不能直接由单片机驱动。系统利用继电器实现弱电控制强电,交通灯驱动电路如图11所示。

 

基于超声计数的智能交通灯控制系统

 

图11 交通灯驱动电路

5、系统软件设计

本系统的主控制程序由两部分组成:车流量智能处理模块和人工手动处理模块。主程序流程图如图12所示。

 

基于超声计数的智能交通灯控制系统

 

图12 主程序流程图

车流量智能处理模块:

程序分时对各个路口进行循环控制,下面以东向行驶车道为例说明,程序逻辑图见图13。

 

基于超声计数的智能交通灯控制系统

 

图13 东向行驶逻辑

首先根据存留车辆数预置初始时间,单个车道时间控制表见表1。此处假设已检测到东向车道存留车辆数为25,系统设置初始时间为15s。东向绿灯亮了15s后,东向超声模块组1开始检测路口通行状态。若检测时间未达到5s,模块组1在连续的0.5s内没有检测到车辆通过并且其他路口有车辆等待,东向即亮黄灯3s,转向对下一个路口的控制;若检测时间已达到5s,无论东向是否仍有车辆通过,东向也直接亮黄灯3s,转向下一个路口的控制。这样就可以减少无车车道的多余通行时间,缩短其余车道上车辆的等待时间,提高通行效率。

表1 单个车道时间控制表

 

基于超声计数的智能交通灯控制系统

 

人工手动处理模块:当某个路口的车辆大于设定的限定值50时,说明此路口已经进入严重拥堵的状态,此时需要由交警进行手动控制。通过手动控制硬件模块,人工协调各个路口的通车时间,以确保拥堵交通下的道路行驶安全。

6、结语

以车流量检测为基础的智能交通灯控制系统,在道路设施一定、车流辆一定的情况下,对解决城市交通问题、提高道路利用率、提升交通自动化水平和管理水平具有一定的意义。本设计投资少、制作简单、安装方便、硬件稳定可靠、功能实用,具有实际推广应用价值。

换一批

延伸阅读

[资讯] 一种新型光伏控制器PWM精确控制的解决方案

一种新型光伏控制器PWM精确控制的解决方案

摘 要: 本文针对现有光伏控制器控制模式的不足,提出一种精粗调组合的新型PWM精确控制的解决方案,将太阳能电池分成N个独立的太阳能子阵,只令一路子阵采用PWM控制作为精调......

关键字:控制器 精确 光伏

[资讯] EPC于2018年WiPDA寬能隙功率器件及应用论坛与工程师作技术交流

EPC于2018年WiPDA寬能隙功率器件及应用论坛与工程师作技术交流

EPC公司的“2018年中国路演”继续展开行程,于5月17至19日在西安举行的首次亚太区WiPDA研讨会中与工程师分享最新的氮化镓技术发展。 ......

关键字:场效应晶体管 DC/DC功率转换

[资讯] 纳微将在中国台湾的电源设计技术论坛活动上展示GaN功率IC带来的革新性效能

纳微将在中国台湾的电源设计技术论坛活动上展示GaN功率IC带来的革新性效能

纳微 (Navitas)半导体宣布其现场应用及技术营销总监黄万年将在2018年1月30日于中国台北举办的“2018前瞻电源设计与功率组件技术论坛”上发表“利用氮化镓(GaN)功率IC实现下一代电源适配器设计”的主题演讲。他将分享如何利用业内......

关键字:纳微 氮化镓 功率IC

[资讯] 智能灵活的大电流 DC/DC 控制器简化电信和数据通信系统中的电源

智能灵活的大电流 DC/DC 控制器简化电信和数据通信系统中的电源

电信和数据通信系统中常见的下一代路由器和交换机的复杂性和可扩展性不断提高,这给电源制造带来了压力,因为人们需要提供智能灵活、可横跨多种平台扩展的高效率电源解决方案。系统设计师经常会需要几种基础架构变体,以能够提供高、中、低端系统,且每种系统......

关键字:DC/DC 控制器 电源

[资讯] “跨界智能化”将有望为未来照明带来新的火花?

“跨界智能化”将有望为未来照明带来新的火花?

伏波,广东省高级工业设计师、副教授,现任广东轻工职业技术学院艺术设计学院工业设计系主任、全国机械行指委工业设计教指委委员、国家高职教育艺术设计(工业设计)专业教学资源库建设工作子项目负责人、广东省第一批省级高职教育重点专业建设项目负责人;拥......

关键字:LED照明 智能照明 智能化控制

[真心话] 单片机大师郭天祥的大学六年,看看与你的有何不同?

单片机大师郭天祥的大学六年,看看与你的有何不同?

在哈尔滨工程大学五年,我在学校电子创新实验室呆了四年,这四年里创新实验室给我提供了良好的学习环境和完善的实验设备;在这里与众多电子爱好者的交流中,使我学到了更多的专业知识;在学校老师们的教导下,让我学会了如何做一名合格的大学生。......

关键字:单片机 郭天祥

[真心话] 身价816亿美元!扎克伯格有望超越巴菲特成全球第三富

身价816亿美元!扎克伯格有望超越巴菲特成全球第三富

Facebook股价今日升至202美元的历史新高。这让Facebook创始人扎克伯格的身价达到了816亿美元,有望成为全球第三富有的人。目前,扎克伯格的身价与巴菲特之间的差距已缩小至2900万美元。Facebook创始人扎克伯格身价周......

关键字:扎克伯格 巴菲特

[趣科技] 谷歌惊天预言:人类将在2029年开始实现远距离性爱与永生

谷歌惊天预言:人类将在2029年开始实现远距离性爱与永生

作家、发明家、计算机科学家、谷歌首席未来学家雷·库兹韦尔(Ray Kurzweil)在接受《花花公子》杂志专访时表示,在不远的将来,技术将让我们变得更聪明、更健康,人类将在2029年开始实现永生,远距离的性爱将发生。......

关键字:谷歌 人类 永生

[疯狂史] 一个只会投机取巧的程序员的奇葩经历,编程没有“捷径”

一个只会投机取巧的程序员的奇葩经历,编程没有“捷径”

在讲述这个故事之前,我有一句话要说:编程是一件特别难的事情!成为优秀的程序员没有捷径,你要拥有高智商,要保持谦逊,还要不断的努力,犯错,在错误中成长,深刻理解你所学习的材料。但是有些人就是一定要寻找捷径,而其中之一,就是使用欺诈的手段。......

关键字:程序员 编程
发表评论 共有条评论
用户名: 验证码:

变频器内部主电路有什么神奇?

变频器内部主电路有什么神奇?

采用“交-直-交”结构的低压变频器,其内部主电路由整流和逆变两大部分组成.……

精确稳定 让平均电流法帮你实现模块电源并联

精确稳定 让平均电流法帮你实现模块电源并联

今天要为大家介绍的是平均电流法,这种方法能够精确稳定的帮助工程师实现电源模块的并……

九款最简单的电子镇流器电路图原理图分析

九款最简单的电子镇流器电路图原理图分析

从工作原理而言,电子镇流器是一个电源变换电路,它将交流输入市电电源的波形、频率和……

项目外包