您现在的位置是:首页 > 数字电源 > 新品

是什么限制了电源小型化?

时间:2018-05-17 来源: 关键字:电源模块   开关电源   

电源模块发展至今,工程师们都着眼于如何将模块做得更为小型化,轻量化,其实大家都明白可以通过提升开关频率来提高产品的功率密度。但为什么迄今为止模块的体积没有变化太大?是什么限制了开关频率的提升呢?

本文引用地址: http://power.21ic.com//digi/np/201805/62122.html

开关电源产品在市场的应用主导下,日趋要求小型、轻量、高效率、低辐射、低成本等特点满足各种电子终端设备,为了满足现在电子终端设备的便携式,必须使开关电源体积小、重量轻的特点,因此,提高开关电源的工作频率,成为设计者越来越关注的问题,然而制约开关电源频率提升的因素是什么呢?其实主要包括三方面,开关管、变压器和EMI及PCB设计。

1、 开关管与开关频率

开关管作为开关电源模块的核心器件,其开关速度与开关损耗直接影响了开关频率的极限,下文为大家大概分析一下

a、开关速度

MOS管的损耗由开关损耗和驱动损耗组成,如图1所示:开通延迟时间td(on)、上升时间tr、关断延迟时间td(off)、下降时间tf。

1.jpg

图1 MOS管开关示意图

以FAIRCHILD公司的MOS为例,如图2所示:FDD8880开关时间特性表。

2.jpg

图2 FDD8880开关时间特性表

对于这个MOS管,它的极限开关频率为:fs=1/(td(on)+tr+td(off)+tf) Hz=1/(8ns+91ns+38ns+32ns) =5.9MHz,在实际设计中,由于控制开关占空比实现调压,所以开关管的导通与截止不可能瞬间完成,即开关的实际极限开关频率远小于5.9MHz,所以开关管本身的开关速度限制了开关频率提高。

b、开关损耗

开关导通时对应的波形图如图2(A),开关截止时对应的波形图如图2(B),可以看到开关管每次导通、截止时开关管VDS电压和流过开关管的电流ID存在交叠的时间(图中黄色阴影位置),从而造成损耗P1,那么在开关频率fs工作状态下总损耗PS=P1 *fs,即开关频率提高时,开关导通与截止的次数越多,损耗也越大,如下图3所示。

3.jpg

图3 开关管损耗示意图

2、 变压器铁损与开关频率

变压器的铁损主要由变压器涡流损耗产生,如图4所示。

给线圈加载高频电流时,在导体内和导体外产生了变化的磁场垂直于电流方向(图中1→2→3和4→5→6)。根据电磁感应定律,变化的磁场会在导体内部产生感应电动势,此电动势在导体内整个长度方向(L面和N面)产生涡流(a→b→c→a和d→e→f→d),则主电流和涡流在导体表面加强,电流趋于表面,那么,导线的有效交流截面积减少,导致导体交流电阻(涡流损耗系数)增大,损耗加大。

4.jpg

图4 变压器涡流示意图

如图5所示,变压器铁损是和开关频率的kf次方成正比,又与磁性温度的限制有关,所以随着开关频率的提高,高频电流在线圈中流通产生严重的高频效应,从而降低了变压器的转换效率,导致变压器温升高,从而限制开关频率提高。

5.jpg

图5 变压器铁损与开关频率关系图

3、EMI及PCB设计与开关频率

假设上述的功率器件损耗解决了,真正做到高频还需要解决一系列工程问题,因为在高频下,电感已经不是我们熟悉的电感,电容也不是我们已知的电容了,所有的寄生参数都会产生相应的寄生效应,严重影响电源的性能,如变压器原副边的寄生电容、变压器漏感,PCB布线间的寄生电感和寄生电容,会造成一系列电压电流波形振荡和EMI问题,同时对开关管的电压应力也是一个考验。

要提高开关电源产品的功率密度,首先考虑的是提高其开关频率,能有效减小变压器、滤波电感、电容的体积,但面临的是由开关频率引起的损耗,而导致温升散热设计难,频率的提高也会导致驱动、EMI等一系列工程问题。

ZLG致远电子自主研发、生产的隔离电源模块已有近20年的行业积累,当前采用全新方案,实现同类型产品,体积最小,例如E_UHBDD-10W模块较上一代ZY_UHBD-10W体积缩减了一半,如下图6所示。

6.jpg

图6 E_UHBDD-10WN与ZY_UHBD-10W规格对比

同时为保证电源产品性能建设了行业内一流的测试实验室,配备最先进、齐全的测试设备,全系列隔离DC-DC电源通过完整的EMC测试,静电抗扰度高达4KV、浪涌抗扰度高达2KV,可应用于绝大部分复杂恶劣的工业现场,为用户提供稳定、可靠的电源隔离解决方案。

7.jpg

换一批

延伸阅读

[资讯] PI公司开关电源IC荣获《今日电子》和21ic中国电子网2018年Top 10电源奖

PI公司开关电源IC荣获《今日电子》和21ic中国电子网2018年Top 10电源奖

PI公司近日宣布,该公司的离线反激式开关电源IC InnoSwitch3-Pro获得了《今日电子》杂志和21ic中国电子网评选的2018年Top 10电源奖。这款产品在原有领先架构的基础上又进一步集成了数字接口,获得了行业内专家和用户的高度......

关键字:开关电源IC

[资讯] 充电器究竟会耗多少电?

充电器究竟会耗多少电?

相信大部分人家里的插排上都插满了大大小小的充电器,大家也都知道其实这样会慢慢地耗电,然而并不以为然。那么这种情况究竟能耗多少电呢?看了下面的一些数据你就知道了。在......

关键字:充电器 耗电 开关电源

[资讯] 纪念SIMPLE SWITCHER 问世25周年

纪念SIMPLE SWITCHER 问世25周年

一切都从五寸盘开始,了解SIMPLE SWITCHER® 器件在最大限度简化电源设计方面的历史。1990年SIMPLE SWITCHER团队发布了第一款宽输入电压 (Vin) 稳压器,连同存储在五寸......

关键字:电源设计 电源模块

[资讯] LTspice IV 如今可很好地应用于 Mac OS X 操作系统

LTspice IV 如今可很好地应用于 Mac OS X 操作系统

凌力尔特公司 (Linear Technology Corporation) 宣布,为广受欢迎的 LTspice® 仿真程式推出可应用于 Mac OS X 操作系列之版本。最新版 LTspice 支持 Mac OS X 10......

关键字:linear 开关电源

[真心话] 充电时到底该先插手机还是先插电源?作为电工你应该知道...

充电时到底该先插手机还是先插电源?作为电工你应该知道...

手机不离身似乎已经成为当代人的日常状态,如此频繁地使用手机,会十分消耗手机的电量,不经意间,一天充电数次,而且一旦充电方式不正确的话不仅会损伤手机电池,甚至还存在安全隐患。关于手机充电,很多人都忽视了......

关键字:充电 手机 电源

[疯狂史] 黄明威:一个从阿里离开后又回来的人

黄明威:一个从阿里离开后又回来的人

阿里人”这三个字,黄明威如今背了14年,也自豪了14年。如果不是中途下了“车”,那就是足足的18年了。......

关键字:黄明威 阿里巴巴
发表评论 共有条评论
用户名: 验证码:

变频器内部主电路有什么神奇?

变频器内部主电路有什么神奇?

采用“交-直-交”结构的低压变频器,其内部主电路由整流和逆变两大部分组成.……

精确稳定 让平均电流法帮你实现模块电源并联

精确稳定 让平均电流法帮你实现模块电源并联

今天要为大家介绍的是平均电流法,这种方法能够精确稳定的帮助工程师实现电源模块的并……

九款最简单的电子镇流器电路图原理图分析

九款最简单的电子镇流器电路图原理图分析

从工作原理而言,电子镇流器是一个电源变换电路,它将交流输入市电电源的波形、频率和……

项目外包