您现在的位置是:首页 > 线性电源 > 技术解析

LDO基础知识:噪声 - 第2部分

时间:2019-01-16 来源:21ic 关键字:LDO   噪声   电容器   

作者:德州仪器Aaron Paxton

在我的上一篇博文LDO基础知识:噪声 – 第1部分中,我探讨了如何减少输出噪声和控制压摆率,方法是为参考电压(CNR/SS)并联一个电容器。在本篇博文中,我将讨论降低输出噪声的另一种方法:使用前馈电容(CFF)。

什么是前馈电容?

前馈电容是一个可选的顶容器,与电阻分压器的上半部电阻并联,如图 1 所示。

 

图 1:使用前馈电容的NMOS低压差稳压器(LDO)

 

图 1:使用前馈电容的NMOS低压差稳压器(LDO)

与降噪电容(CNR/SS)相似,添加前馈电容具有多种效果。最主要的是降噪,还包括改进稳定性、负荷响应和电源抑制比(PSRR)。(应用报告“使用前馈电容的低压差稳压器的优缺点,”详尽讨论了这些益处。)值得注意的是只有使用可调节LDO时才能使用前馈电容,因为此时电阻网络在外部。

降噪

LDO进行调节时会使用误差放大器,而误差放大器会使用电阻网络(R1和R2)来提高参考电压的增益,从而驱动FET的栅极,这与同相放大器非常相似。参考的直流电压将增加???倍。不过,考虑到误差放大器的带宽,您还可以寄望于参考电压某些交流元件的放大功能。

通过为电阻分压器上半部分电阻并联电容器,您就针对特定频率范围引入了一个分流器。换言之,您使该频率范围内的交流元件贡献于单位增益,此时R1模拟短路的情况。(请牢记所用电容器的阻抗属性,以便确定该频率范围。)

如图 2 所示,您可以看到使用不同CFF值时,TPS7A91的噪声下降效果。

 

2.jpg

 

图 2:TPS7A91噪声 vs. 频率和CFF值

通过为电阻分压器上半部分电阻并联一个100nF电容器,可将噪声从9μVRMS降至4.9μVRMS.

改进稳定性和瞬态响应

添加一个CFF还为LDO反馈环路引入了零点(ZFF)和极点(PFF),它们的计算见等式 1 和 2:

ZFF = 1 / (2 x π x R1 x CFF) (1)

PFF = 1 / (2 x π x R1 // R2 x CFF) (2)

在达到发生单位增益的频率之前就形成零点,可以改善相位裕度,如图 3 所示。

 

3.jpg

 

图 3:仅使用前馈补偿的典型LDO的增益/相位图

您可以看到如果没有ZFF,单位增益的发生大约将提前约200kHz。通过添加零点,单位增益频率向右移动了一点(~300kHz),但是相位裕度也增加了。由于PFF位于单位增益频率的右侧,所以它对于相位裕度的影响也最小。

在改进LDO的负荷瞬态响应后,将看到相位裕度的明显增加。在相位裕度增加后,LDO输出将减少振铃并更快速稳定。

改善PSRR

取决于零点和极点的设置,您还可以巧妙减少增益漂移。图 3 显示了零点对从100kHz开始的增益下降的影响。通过提高频段内的增益,您还将改进该频段的环路响应。这会改善该特定频率范围的PSRR。参见图4。

 

4.jpg

 

图 4:TPS7A8300 PSRR vs. 频率和CFF值

如图所示,增加CFF电容值,会将零点推向左侧。催生较低频率范围内产生更佳的环路响应和相应PSRR。

当然,您必须选择CFF值和适当添加零点ZFF和极点PFF,这样才不会造成不稳定。遵守上面这个数据表给出的CFF限值,即可防止不稳定情况的出现。大电容值CFF会造成前述应用报告介绍的其他问题。

表 1 列出了有关CNR和CFF如何影响噪声的经验法则。

5.jpg

表 1:CNR和CFF vs 频率

结论

正如本文论述的那样,添加一个前馈电容可降噪,改进稳定性、负荷响应和PSRR。当然,您必须仔细选择电容器才能维持稳定性。如果采用降噪电容器,交流性能将获得大幅改善。这些是您需要牢记以便优化电源的几个方法。

换一批

延伸阅读

[资讯] 离线式LED驱动电路分类

离线式LED驱动电路分类

AX2028在设计上的重大改进使得性能更趋完善,固定Toff工作模式、高占空比、高达92%的效率、高恒流精度等特性,使其更适用于LED照明灯具的驱动电源应用。......

关键字:高性价 无噪声

[资讯] LDO和DC-DC器件的区别与差异

LDO和DC-DC器件的区别与差异

DCDC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器,包括LDO。但是一般的说法是把直流变(到)直流由开关方式实现的器件叫DCDC。......

关键字:DC/DC LDO 交流电源

[资讯] 中科院成功研制硫掺杂石墨烯基柔性全固态超级电容器

中科院成功研制硫掺杂石墨烯基柔性全固态超级电容器

近日,中国科学院合肥物质科学研究院等离子体物理研究所博士王奇和南京师范大学教授韩敏课题组合作,在高性能杂原子掺杂石墨烯基纳米结构的规模化制备及其在柔性全固态超级电容器应用方面取得新进展。 ......

关键字:超级电容器 石墨烯

[资讯] 基美电子推出小型0603 EIA封装尺寸的静电放电(ESD)额定陶瓷电容器

基美电子推出小型0603 EIA封装尺寸的静电放电(ESD)额定陶瓷电容器

基美电子(KEMET),现已推出小型0603 EIA封装尺寸(公制1608)的静电放电(ESD)额定陶瓷电容器,从而为设计人员提供了适用于需要Class-II或Class-I稳定性和抗噪声性能的电路的X7R或C0G电介质新选择。该器件提供汽......

关键字:基美电子 陶瓷电容器
发表评论 共有条评论
用户名: 验证码:

怎样使用浪涌电流限制器NTC

怎样使用浪涌电流限制器NTC

各种开关电源(SMPS)——它们体积小、重量轻、性能高——通常被用作电子设备的电源。……

利用光传感电路来降低光电二极管带宽和噪声影响

利用光传感电路来降低光电二极管带宽和噪声影响

这种设计中,A 2的输入电容是跨阻抗系统 AC 传输函数中起作用的唯一电容。缓冲器输入电……

基站瞬断问题的解决方案

基站瞬断问题的解决方案

导致蓄电池组性能下降的原因主要是由于基站恶劣的运行环境,如经常发生的高温、过放电……

项目外包