您现在的位置是:首页 > 功率器件 > 技术解析

玩不转JTAG接口,就别想炼就为嵌入式开发大神?

时间:2018-02-08 来源: 关键字:   

通常所说的大致分两类,一类用于测试芯片的电气特性,检测芯片是否有问题;一类用于Debug;一般支持的CPU内都包含了这两个模块。

本文引用地址: http://power.21ic.com//poc/technical/201802/59858.html

一个含有 Debug接口模块的CPU,只要时钟正常,就可以通过JTAG接口访问CPU的内部寄存器和挂在CPU总线上的设备,如FLASH,RAM,SOC(比如4510B,44Box,AT91M系列)内置模块的寄存器,象UART,Timers,GPIO等等的寄存器。上面说的只是JTAG接口所具备的能力,要使用这些功能,还需要软件的配合,具体实现的功能则由具体的软件决定。例如下载程序到RAM功能。了解SOC的都知道,要使用外接的RAM,需要参照SOCDataSheet的寄存器说明,设置RAM的基地址,总线宽度,访问速度等等。有的SOC则还需要Remap,才能正常工作。运行Firmware时,这些设置由Firmware的初始化程序完成。但如果使用JTAG接口,相关的寄存器可能还处在上电值,甚至时错误值,RAM不能正常工作,所以下载必然要失败。要正常使用,先要想办法设置RAM。在ADW中,可以在Console窗口通过Let 命令设置,在AXD中可以在Console窗口通过Set命令设置。

下面是一个设置AT91M40800的命令序列,关闭中断,设置CS0-CS3, 并进行Remap,适用于AXD(ADS带的Debug)

setmem 0xfffff124,0xFFFFFFFF,32 ---关闭所有中断

setmem 0xffe00000,0x0100253d,32 ---设置CS0 0xffe00004,0x02002021,32 ---设置CS1

setmem 0xffe00008,0x0300253d,32 ---设置CS2

setmem 0xffe0000C,0x0400253d,32 ---设置CS3

setmem 0xffe00020,1,32 ---Remap

如果要在ADW(SDT带的DEBUG)中使用,则要改为:

let 0xfffff124=0xFFFFFFFF ---关闭所有中断

let 0xffe00000=0x0100253d ---设置CS0

let 0xffe00004=0x02002021 ---设置CS1

let 0xffe00008=0x0300253d ---设置CS2

let 0xffe0000C=0x0400253d ---设置CS3

let 0xffe00020=1 ---Remap

为了方便使用,可以将上述命令保存为一个文件config.ini, 在Console窗口输入 ob config.ini 即可执行。

使用其他debug,大体类似,只是命令和命令的格式不同。

设置RAM时,设置的寄存器以及寄存器的值必须和要运行程序的设置一致。一般编译生成的目标文件是ELF格式,或类似的格式,包含有目标码运行地址,运行地址在Link时候确定。Debug下载程序时根据ELF文件中的地址信息下载程序到指定的地址。如果在把RAM的基地址设置为0x10000000, 而在编译的时候指定Firmware的开始地址在0x02000000, 下载的时候,目标码将被下载到0x02000000,显然下载会失败。

通过JTAG下载程序前应关闭所有中断,这一点和Firmware初始化时关闭中断的原因相同。在使用JTAG接口的时候,各中断的使能未知,尤其是FLASH里有可执行码的情况,可能会有一些中断被使能。使用JTAG下载完代码,要执行时,有可能因为未完成初始化就产生了中断,导致程序异常。所以,需要先关闭中断,一般通过设置SOC的中断控制寄存器完成。使用JTAG写Flash。在理论上,通过JTAG可以访问CPU总线上的所有设备,所以应该可以写FLASH,但是FLASH写入方式和RAM大不相同,需要特殊的命令,而且不同的FLASH擦除,编程命令不同,而且块的大小,数量也不同,很难提供这一项功能。所以一般Debug不提供写Flash功能,或者仅支持少量几种Flash。目前就我知道的,针对arm,只有FlashPGM这个软件提供写FLASH功能,但使用也非常麻烦。AXD,ADW都不提供写FLASH功能。我写Flash的方法时是,自己写一个简单的程序,专门用于写目标板的FLASH,利用JTAG接口,下载到目标板,再把要烧写的目标码装成BIN格式,也下到目标板(地址和烧FLASH的程序的地址不同),然后运行已经下载的烧FLASH的程序。使用这种方式,比起FlashPGM的写Flash,速度似乎要快一些。

关于简单JTAG电缆。

目前有各种各样简单JTAG电缆,其实只是一个电平转换电路,同时还起到保护作用。JTAG的逻辑则由运行在PC上的软件实现,所以在理论上,任何一个简单JTAG电缆,都可以支持各种应用软件,如Debug等。我就曾使用同一个JTAG电缆写Xilinx CPLD,AXD/ADW调试程序。关键再于软件的支持,大多数软件都不提供设定功能,因而只能支持某种JTAG电缆。

关于简单JTAG电缆的速度。JTAG是串行接口,使用打印口的简单JTAG电缆,利用的是打印口的输出带锁存的特点,使用软件通过I/O产生JTAG时序。由JTAG标准决定,通过JTAG写/读一个字节要一系列的操作,根据我的分析,使用简单JTAG电缆,利用打印口,通过JTAG输出一个字节到目标板,平均需要43个打印口I/O, 在我机器上(P4 1.7G),每秒大约可进行660K次 I/O 操作,所以下载速度大约在660K/43, 约等于15K Byte/S. 对于其他机器,I/O速度大致相同,一般在600K ~ 800K.

关于如何提高JTAG下载速度。

很明显,使用简单JTAG电缆无法提高速度。要提高速度,大致有两种办法,

1。使用系统提供JTAG接口,系统和微机之间通过USB/Ethernet相连,这要求使用MCU。

2。使用CPLD/FPGA提供JTAG接口,CPLD/FPGA和微机之间使用EPP接口(一般微机打印口都支持EPP模式),EPP接口完成微机和CPLD/FPGA之间的数据传输,CPLD/FPGA完成JTAG时序。

这两种方法本人都实现过。第一个方法可以达到比较高的速度,实测超过了200KByte/S(注意:是Byte,不是Bit);但是相对来说,硬件复杂,制造相对复杂。第二种相对来说,下载速度要慢一些,最快时达到96KByte/S,但电路简单,制造方便,而且速度可以满足需要。第二种方案还有一个缺点,由于进行I/O操作时,CPU不会被释放,因此在下载程序时,微机CPU显得很繁忙。

总的来说,本人认为,对于个人爱好者来说,第二种方法更可取。

换一批

延伸阅读

[资讯] 遗憾收场的东芝家电如何重获新生?

遗憾收场的东芝家电如何重获新生?

沉舟侧畔千帆过,病树前头万木春。 相信没有人会想到,当初命在旦夕的东芝会有重获新生的可能,毕竟商业江湖,一旦走了下坡路,想要来个转折逐步走向复活,这绝对不是件易事。但凡事哪能一棒子打死,要么怎会有奇迹的存在呢?东芝家电就是那个例外的存......

关键字:东芝 家电 电视

[资讯] 构建5G车联网 华人运通与中国移动合作

构建5G车联网 华人运通与中国移动合作

近日,华人运通与中国移动旗下车联网公司中移智行签署战略合作协议,基于华人运通“三智”战略,将5G应用于车、路、城系统性解决方案中。 ......

关键字:中国移动 5G 智慧城市

[资讯] 上海理工出新招 助力新一代机器智能

上海理工出新招 助力新一代机器智能

人工智能是当前科技发展的热点,也是世界经济与社会发展的重要杠杆。近日,上海理工大学举行2019国际机器智能研讨会暨成果展示会,上海理工大学机器智能研究院揭牌成立。 ......

关键字:人工智能 AI 上海理工

[资讯] 全面推动儿童机器人市场的高速发展

全面推动儿童机器人市场的高速发展

随着大数据、云计算、人工智能等技术的成熟应用,儿童智能产业成为当前智能化大潮中的火热行业,各方资本纷纷进入其中,产业进入快车道。据相关数据显示,我国儿童消费产业的市场规模大2万亿元,而由儿童智能手表、儿童智能机器人等为代表的儿童智能产品产业......

关键字:大数据 云计算 人工智能

[资讯] 通用电气为算法引入业务风险考量,试用“谦逊人工智能”

通用电气为算法引入业务风险考量,试用“谦逊人工智能”

通用电气认为,人工智能可以具备一定程度的谦逊,算法将有足够的意识来了解它们不知道的东西。 ......

关键字:通用电气 人工智能 AI

[真心话] 电子工程师请远离浮躁

电子工程师请远离浮躁

什么样的人是浮躁的人?浮躁的人容易问:我到底该学什么;---踏踏实实的学点基本的吧?单片机不知道是什么就想去学ARM?c语言不会想搞LINUX?别老是好高骛远。......

关键字:电子工程师

[趣科技] 谷歌惊天预言:人类将在2029年开始实现远距离性爱与永生

谷歌惊天预言:人类将在2029年开始实现远距离性爱与永生

作家、发明家、计算机科学家、谷歌首席未来学家雷·库兹韦尔(Ray Kurzweil)在接受《花花公子》杂志专访时表示,在不远的将来,技术将让我们变得更聪明、更健康,人类将在2029年开始实现永生,远距离的性爱将发生。......

关键字:谷歌 人类 永生

相关文章

    无相关信息
发表评论 共有条评论
用户名: 验证码:

变频器内部主电路有什么神奇?

变频器内部主电路有什么神奇?

采用“交-直-交”结构的低压变频器,其内部主电路由整流和逆变两大部分组成.……

精确稳定 让平均电流法帮你实现模块电源并联

精确稳定 让平均电流法帮你实现模块电源并联

今天要为大家介绍的是平均电流法,这种方法能够精确稳定的帮助工程师实现电源模块的并……

九款最简单的电子镇流器电路图原理图分析

九款最简单的电子镇流器电路图原理图分析

从工作原理而言,电子镇流器是一个电源变换电路,它将交流输入市电电源的波形、频率和……

项目外包